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The one-dimensional ballistic aggregation process is considered when the initial
mass density or the initial particle velocities vanish outside of a finite or semi-
infinite interval. In all cases, we compute the mass distributions in closed analy-
tical form and study their long time asymptotics. The relevant length scales are
found different (of the order t, t2/3, t1/2) if, at the initial time, particles occupy a
finite (or semi-infinite) interval and if a finite (or infinite) number of them are
set into motion.
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1. INTRODUCTION

The one-dimensional ballistic aggregation process consists in a system of
point particles, moving on a line and forming aggregates through perfectly
inelastic, adhesive collisions. The motion between collisions is free. In binary
collisions two particles merge instantaneously into a single aggregate with
conservation of mass and momentum, but dissipation of energy. This
dynamic is deterministic, randomness occurs only through the distribution
of initial data.

From the viewpoint of the statistical mechanics of point particles, this
model has been first introduced and studied numerically in ref. 1. However,
in the context of fluid dynamics, it has been realized much earlier that the
evolution of shock waves in the inviscid limit of the one-dimensional
Burgers equation obeys the laws of ballistic aggregation (see refs. 2 and 3
and the books of refs. 4 and 5 for more background). Let us mention here
that the motion of shock waves or its equivalent formulation in terms of



adhesion dynamics has been proposed by Zeldovich as a model for inves-
tigating the large-scale structure of the universe. (6) The Burgers equation is
also relevant to the problem of surface growth via the deposition process, (7)

as well as to the dynamics of the exclusion particle system. (8) An attractive
feature of one-dimensional adhesion dynamics, in addition to its close
connection to problems of various physical origins, is that it provides a
mathematically tractable many-particle dynamic system.

In the previous works (9, 10) (see also ref. 11 for a short review), ballistic
aggregation has been solved in closed analytical form when the distribution
of initial data is homogeneous in space. In this homogeneous process, the
mass density r of initial particles is uniform over the whole real line, all
having the same mass m. Their initial momenta are uncorrelated, each of
them being distributed according to the same Maxwellian

jm(p)=1
b

2pm
21/2

exp 1 −bp
2

2m
2 (1)

where b is an inverse temperature.
In the present paper we consider various types of inhomogeneous

processes. Inhomogeneity can stem in particular from a non uniform initial
mass density r(x), as well as from a non spatially constant initial tempera-
ture b−1(x). Physically, in a gas with elastic collisions, density and temper-
ature gradients generate diffusive flows of particles. It is of interest to
investigate the nature of such diffusion processes when the collisions are
dissipative. Moreover, in relation with the Burgers equation, an inhomo-
geneous initial velocity distribution of the aggregating particles corresponds
to non-uniform excitations of the initial Burgers field. More comments on
this point are given in the concluding remarks.

Specifically, we treat the following cases:

(i) The initial mass density is constant in the finite interval
[0, r−1M0] or in the semi-infinite interval [0,.) and equal to zero other-
wise. All particles have the same temperature b−1 > 0.

In the course of time the particles will leak out of the interval where
they are initially confined, still undergoing inelastic collisions. It transpires
that the diffusion process obeys different scaling laws depending wether the
total amount of mass is finite or infinite.

(ii) The initial mass density is constant on the whole line. The initial
particles have the temperature b−1 > 0 in the finite interval [0, r−1M0] or
in the semi-infinite interval [0,.) and are at rest elsewhere (i.e., at zero
temperature).
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In this case the inertia of particles at rest hinder the flow of the
moving particles and we obtain still other scaling regimes.

We refer to case (i) as ballistic aggregation in empty space and to case
(ii) as ballistic aggregation with particles at rest. The set of particles that
have a non zero initial temperature will be called the set of (initially)
excited particles.

The basic quantity to be studied in this paper is the probability density
p(x, M, t) for finding (in the continuum limit) an amountM of mass of the
excited particles to the left of x at time t. Related to this quantity is the
total average mass M(x, t) of excited particles found left of x

M(x, t)=F
M0

0
dMMp(x, M, t)=F

x

−.
dy r(y, t) (2)

yielding the average mass density

r(x, t)=
d
dx

M(x, t) (3)

We emphasize that in all cases this mass density profile is obtained explicitly,
a rather rare instance in the theory of inhomogeneous non-equilibrium
systems.

Of interest will be the large time behavior of the distribution
p(tta, M, t) when one looks at the system on various spatial scales x=tta,
a \ 0. In the homogeneous aggregation process, the only relevant scale is
x=tt2/3: typically, aggregates with masses of the order M ’ t2/3 are found
at distances x ’ t2/3 from each other. (1, 9) Here, we determine the distribu-
tion p(x, M, t) in closed analytical form for the cases (i) and (ii) described
above. The finite interval case is treated in Section 2 and the semi-infinite
interval in Section 3.

If the initial interval is finite and the particles aggregate in empty
space, the large time scale will be ballistic, namely x=tt. Indeed, since
there is a finite amount of mass available, for large times one will observe a
number of clusters that move freely without colliding anymore. These
moving clusters will be found at a distance of order t from the origin and
from each other (Section 2.1). We find that p(tt, M, t) has a well defined
limit as tQ., expressible in terms of the incomplete Gamma function
(Eq. (17)) and represented in Fig 2a. The corresponding mass density
profile has a slow decay in terms of the scaling variable t (see (29))

lim
t Q.
r(tt, t) ’

1
2t3 , tQ. (4)
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If aggregation starting from a finite interval takes place in an envi-
ronment of particles at rest, the pertinent scale becomes x=t`t as
indicated in the elementary example presented in the introduction of ref. 9.
In this example one analyses the motion of a single particle, which collects
the mass of the particles at rest along its way. In general, escape of excited
particles is slowed by the inertia of particles at rest, and as a result an
aggregate of mass M ’`t is typically found at distance x ’`t from the
origin (Section 2.2). We find here that p(t`t , M, t) converges to the
distribution given by Eq. (35) and illustrated in Fig. 2b. In contrast to (4),
the mass density profile has now the very fast decay ’ 2`M0

p |t| exp(−
t

4

4M0
),

tQ. (Eq. (39).
The situation is drastically different if initially excited particles extend

over a semi-infinite interval on the right, acting as an infinite reservoir of
mass and momentum (Section 3.1). The initial particles will ‘‘evaporate’’ in
empty space on the left, and one will observe a whole spectrum of masses
M ’ t2(1−a), 2/3 [ a [ 1, on distances x ’ ta. More precisely, at scale
x=tt2/3 one recovers the typical scaling properties valid for the homoge-
neous process, namely t2/3p(tt2/3, mt2/3, t) is equal to a time-independent
scaling function written with the help of Airy functions (see (47) and (48)).
There is a non trivial mass density profile at this scale (Eq. (52)), plotted in
Fig. 4. Moreover, it is interesting to note that there is another non trivial
limiting distribution limt Q. p(tt, M, t) (Eq. (53)) obtained in the ballistic
regime x=tt. It gives the distribution of forerunner particles with masses
of order 1 that move freely in front of the profile without undergoing
aggregation anymore. At intermediate scales x=tta, a < 1, more massive
aggregates can be formed, catched by the flow of particles continuously
coming from the right. The total average mass of these aggregates grows as
(see (54))

M(tta) ’
t2(1−a)

4t2 , tQ. (5)

interpolating between masses of order 1 and t2/3

If the left space contains particles at rest, we find again a definite
scaling function at scale x=tt2/3 (Eq. (58)) because mass and momentum
are constantly supplied from the reservoir on the right (Section 3.2). This
leads to the mass density profile given in Fig. 4. The difference with the
previous case is that, because of the slowing down effect caused by the
particles at rest, there is no propagation of particles at distances x=tta,
a > 2/3.
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2. INITIALLY EXCITED PARTICLES IN A FINITE INTERVAL

We specify the model in more details. The initial particles, of mass m,
are located on the sites of the one-dimensional lattice {ka, k=..., −1, 0,
1,...} with lattice spacing a. In the model with discrete initial masses, we
will compute the probability Pm(x, j, t) to find j initially excited particles
left of x at time t. Of course during the time evolution these initially excited
particles can merge one with another or with particles at rest on their way.
We will consider more precisely the probability density for finding an
amountM of mass of these excited particles left of x in the continuum limit
defined as

p(x, M, t)=lim
m Q 0

1
m
Pm(x, j, t) (6)

where we let aQ 0, mQ 0 keeping m/a=r, M=jm fixed, as well as
M0=Nm when we have a finite interval comprising N initially excited
particles. In the rest of the paper the initial mass density r will be set equal
to one for simplicity.

The whole analysis depends on the observation that an aggregate is
moving along the trajectory of the center of mass of its constituting par-
ticles. Trajectories of center of mass are uniquely determined by initial
positions and momenta. Let

X r
a+1(t)=(2a+1+r)

a
2
+
P r
a+1t
rm

(7)

be the center of mass of the cluster of the r particles initially located at
{(a+1) a,..., (a+r) a} with total momentum P r

a+1=; r
k=1 pa+k. The ini-

tially excited particles may occupy the lattice sites {ka, k=1,..., N}
(N=M0/m) or the semi-infinite lattice {ka, k=1, 2,...}. The necessary
and sufficient condition to find j of them left of x at time t, j=0, 1,..., N,
is X r

j+1(t) > x, r=1, 2,... and X
r
j+1−r(t) < x, r=1, 2,..., namely all centers

of mass of clusters of initial particles right of ja are found right of x at time
t and those of clusters of initial particles left of ja ( ja included) are found
left of x (see ref. 9). Hence

Pm(x, j, t)=7D
r \ 1
h(Xr

j+1(t)−x) D
r \ 1
h(x−X r

j+1−r(t))8 , j=0, 1,...
(8)

Inhomogeneous Ballistic Aggregation 749



where the average is taken over the momentum distribution of the initial
particles and h is the Heaviside function. In the discrete model,this proba-
bility has obviously the normalization

C
j \ 0
Pm(x, j, t)=1 (9)

since at any time either 0, 1,... or all excited particles have to be found to
the left of x.

2.1. Aggregation in Empty Space

The N initial particles occupy the sites ka, k=1,..., N, with total mass
M=Nm. Since initial particles have the independent momentum distribu-
tion (1), the probability (8) has a factorized form written as

Pm(x, j, t)=Jm((j+1/2) a−x, j, t) Jm(x−(j+1/2) a, N−j, t) (10)

with

Jm(Y, j, t)=7D
j

r=1
h(x−X r

j+1−r(t))8

=F dP1 · · ·F dPj jm(P1) · · ·jm(Pj) D
j

r=1
h(Pr−fY(rm, t)) (11)

where the parabola

fY(y, t)=
y
t
1Y−y

2
2 (12)

results of the constraints on the center of masses expressed in (8). The
derivation is analogous to that found in ref. 9; Jm(Y, j, t) can be interpreted
as the measure of Brownian paths starting from the origin at ‘‘time’’ y=0
and that must be above the parabola fY(y, t) at discrete ‘‘times’’ yr=rm,
r=1,..., j. This is illustrated in Fig. 1a.

We expect that the particles do not undergo collisions anymore for
large times, so we set x=tt and compute

lim
t Q.
Pm(tt, j, t) —P

.

m (t, j) (13)

which represents the distribution of mass that moves asymptotically freely
left of tt as tQ.. This is easily done by noting that withY=(j+1/2) a−tt,
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Fig. 1. The black dots represent the constraints on Brownian motion in Eq. (8), Fig. 1a, and
in Eq. (29), Fig. 1b.

limt Q. fY(y, t)=−ty so the parabolic constraint reduces to a linear one,
and the function Jm(Y, j, t) tends to the measure J.m (t, j) of Brownian
paths starting from the origin and that must be above the linear barrier
−ty at discrete ‘‘times’’ yr=rm, r=1,..., j.

Next we evaluate from (13) the probability density for finding an
amount of massM left of tt in the continuum limit.2

2 Here we first take the long time limit followed by the continuum limit, but the order of these
limits is irrelevant, see the remark after (22).

p.(t, M)=lim
m Q 0

1
m
P.(t, j) (14)

For this we use for instance the result of the proposition in Section 8 of
ref. 12,3 namely,

3 In this paper the parameters b and b in ref. 12 are set equal to b=2, b=1.

lim
m Q 0

1

`m
J.m (t, j)=

1
2
F
.

−tM

“

“P0
Kt(0, P0, M, P)|P0=0 dP

— J.(t, M), 0 <M <M0 (15)

where Kt(0, P0, M, P) is the conditional measure of Brownian paths start-
ing from P0 at ‘‘time’’ 0, ending at P at ‘‘time’’ M and lying above the line
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−tM for all intermediate ‘‘times.’’ This kernel is recalled in Appendix A
and a straightforward calculation leads to

J.(t, M)=|t| 12h(t)+ 1

2`p
C−1/2(Mt2)2 , 0 <M <M0 (16)

where Cn(x)=>.x dy e−yyn−1 is the incomplete gamma function. Hence
from (10)-(16) the final result is for 0 <M <M0

p.(t, M)=
t2

`p
C−1/2(Mt2)11+ 1

4`p
C−1/2((M0−M) t2)2 , t < 0

p.(t, M)=p.(−t, M0−M), t > 0

(17)

Relation (15) only determines p.(t, M) forM ] {0, M0} and one must still
check if p.(t, M) carries a non zero finite weight at M=0 and M=M0

corresponding to a non zero probability for finding no mass or the total
mass left of tt as tQ.. To check this point we note that from (17) (see
Appendix A)

F
M0

0
dM p.(t, M)=1 (18)

So {M: 0 [M [M0} is a set of measure equal to 1 and the determination
of the asymptotic mass distribution (17) is thus complete.

Since

C−1/2(M) ’ 2/`M, MQ 0, (19)

one sees that there is a strong enhancement of the probability density to
find small aggregates left of tt, t < 0,

p.(t, M) ’
t2

`M
1 2
`p
+
1
2p
C−1/2(M0t

2)2 , MQ 0, t < 0 (20)

As tQ 0, p.(t, M) tends to

p.(0, M)=
1

p`M(M0−M)
(21)

752 Frachebourg et al.



Fig. 2. Mass distribution Eq. (14) for aggregation in empty space (Fig. 2a), and Eq. (32) for
aggregation with particles at rest (Fig. 2b). In the latter case, one must add the contribution
d(M) P̃.(t, 0) atM=0.

showing a symmetric distribution of the mass around M0/2. The distribu-
tion p.(t, M) as a function ofM for various values of t < 0 is represented
in Fig. 2a.

At this point we note that it is also possible to determine the probabil-
ity density p(x, M, t)=limm Q 0 Pm(x, j, t)/m in the continuum limit for all
times in an explicit form

p(x, M, t)=J(M−x, M, t) J(x−M, M0−M, t) (22)

where the function J(Y, M, t) (see Section 3.1) is given in Appendix B.
Then one can check using the asymptotic properties of J(Y, M, t) that
limt Q. p(tt, M, t)=p.(t, M) leads to the result (17) (this is sketched in
Appendix B). Thus the large time asymptotics and the description in the
continuum are exchangeable limits.

From (2) the total average mass M(t) found left of tt as tQ. for
t < 0 is

M.(t)=lim
t Q.

M(tt, t)=F
M0

0
dMMp.(t, M)

=
1

`p t2
F

M0t
2

0
dMMC−1/2(M)

+
M0

8p
F

M0t
2

0
C−1/2(M) C−1/2(M0t

2−M) (23)
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and for t > 0,

M.(t)=M0−M.(−t) (24)

Using (17), M.(t) can be written in the alternative forms

M.(t)=
1

`p
F

M0t
2

0
dM C−1/2(M)1

M
t2−
M0

2
2+M0

2

=
1

`p t2
F

M0t
2

0
dMMC−1/2(M)+

M0

2
F

M0t
2

0
dM C−1/2(M) (25)

The last line results from >.0 dM C−1/2(M)=`p.
The asymptotic behaviors of M.(t) as |t|Q. or |t|Q 0 are easily

found from the expressions in (25). For t < 0,

M.(t) ’
1
4t2 , tQ −. (26)

’
M0

2
−
2M3/2

0

3`p
|t|, tQ 0, t < 0 (27)

In particular, M.(0)=M0
2 .

We deduce from the preceding results that the mass density profile
r(x, t) (2) has the scaling limit

r.(t)=lim
t Q.
tr(tt, t)=

d
dt

M.(t) (28)

and from (26)

r.(t) ’
1
2 |t|3

, tQ ±. (29)

This profile represents the asymptotic average mass density of particles
subjected to ballistic aggregation starting from a uniform distribution in a
finite interval [0, M0]. It is an even function of t and it is plotted in Fig. 3.

To conclude this section we remark that if one looks at distances that
do not correspond to ballistic motion, i.e., x=tta, a \ 0, a ] 1, one finds
that with Y=(j+1/2) a−tta, t < 0, the constraint fY(y, t) tends to . or
0 depending if a > 1 or 0 [ a < 1, which is equivalent to tQ −. or tQ 0.
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Fig. 3. The mass density for aggregation (finite excited interval): (i) in empty space at scale
tt (solid curve, Eq. (25)); (ii) with particles at rest at scale t`t (dashed curve, Eq. (35)).

If a > 1, limtQ −. p
.(t, M)=0 since no particle has a motion faster than

ballistic. If 0 [ a < 1 the limiting distribution is always p.(M, 0) given by
(21). At all theses scales and on the average the total mass splits asymptot-
ically in equal parts to the left and to the right.

Our analysis does not give information on the statistics of the number
of aggregates at large time as well as their individual masses. Nice results
of this type are found in ref. 13. In particular the probabilities (for the
discrete system) to have asymptotically exactly k aggregates or an aggregate
of mass mj are obtained for a general class of initial velocity distributions.

2.2. Aggregation with Particles at Rest

As in (10), the probability to find j initially excited particles left of x
factorizes

P̃m(x, j, t)=J̃m((j+1/2) a−x, j, t) Jm(x−(j+1/2) a, N−j, t) (30)

with

J̃m(Y, j, t)=F dP1 · · ·F dPj jm(P1) · · ·jm(Pj)

×D
j

r=1
h(Pr−fY(rm, t)) D

.

r=j+1
h(Pj−fY(rm, t)) (31)
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Here the additional constraints <.

r=j+1 h(Pj−fY(rm, t)) come from the
conditions on the centers of mass of clusters involving initial particles at
rest that can be set into motion through collisions with excited particles.
Now if x=(j+1/2) a−Y < 0, one has supr > j fY(rm, t)=Y2/2t and if
x > 0, supr > j fY(rm, t)=fY(jm, t). Hence for x < 0

J̃m(Y, j, t)=F dP1 · · ·F dPj jm(P1) · · ·jm(Pj)

×D
j

r=1
h(Pr−fY(rm, t)) h 1Pj−

Y2

2t
2 (32)

whereas J̃m(Y, j, t) reduces to Jm(Y, j, t) Eq. (11) when x > 0. This is illus-
trated in Fig. 1b.

We introduce the scaling x=t`t . With Y=(2j+1) a−t`t , one
has Y2/2tQ t2/2 and fY(y, t)Q 0 as tQ.. Therefore, when t < 0,
J̃m(Y, j, t) tends to the measure J̃m(t, j) of Brownian paths starting from
the origin that are positive at discrete ‘‘times’’ yr=rm, r=1,..., j−1, and
surpass the point t2/2 at ‘‘time’’ jm. In the continuum limit with jm=M

lim
m Q 0

1

`m
J̃.m (t, j)=

1
2
F
.

t
2

“

“P0
K(0, P0, M, P)|P0=0 dP

— J̃.(t, M), t < 0, 0 <M <M0 (33)

where K0(0, P0, M, P) is the conditional measure of Brownian paths start-
ing from P0 at ‘‘time’’ 0, ending at P at ‘‘time’’ M and remaining positive
for all intermediate ‘‘times.’’ With the help of (60) and (61) the calculation
leads to

J̃.(t, M)=
1

`pM
exp 1 − t

4

4M
2 , t < 0, 0 <M <M0 (34)

When t > 0 and x=t`t , fY(y, t)Q 0 as tQ., and in the continuum
limit J̃m(Y, j, t)/`m reduces to J.(t=0, M)=1/`pM by (16) and (19).
Hence, we have limt Q. P̃m(t`t , j, t)=P̃

.

m (t, j) and

p̃.(t, M)=lim
m Q 0

1
m
P̃.m (t, j)=

1

p`M(M0−M)
exp 1 − t

4

4M
2 , t < 0

p̃.(t, M)=p̃.(−t, M0−M), t > 0

(35)
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This holds for 0 <M <M0. In order to check for normalization, we will
use the equation [ref. 14, p. 366]

F
.

u

(x−u)n

x
e−mx=unC(n+1) C−n(um)

we find from (35)

F
M0

0
dM p̃.(t, M)=

1

`p
C1/2(t4/M0) (36)

so that there is the probability

P̃.(t, 0)=1−
1

`p
C1/2(t4/M0)=

1

`p
c1/2(t4/M0) (37)

(cn(x)=>x
0 dy e

−yyn−1) that no fraction of the initially excited particles is
found left of t`t , t < 0, as tQ.. In Appendix A, we provide a direct
calculation of the total amount M0 of excited particles remaining on the
right of t`t which of course coincides with (37).4 Note that for t=0, the

4 Then the full density probability has a d(M)P.(t, 0) weight at the point M=0, but this
does not contribute to the mass density (39).

distribution (35) reduces to the same form (21) found for aggregation in
empty space. The distribution p̃.(t, M) as a function of M is shown in
Fig. 2b for various values of t.

As before one can calculate the mass M̃.(t)=>M0
0 dMMp̃

.(t, M) of
initially excited particles left of t`t as tQ. and the mass density profile
r̃.(t)=dM̃.(t)/dt at the scale x=t`t with the result

r̃.(t)=|t|3
1

`p
C1/2(t4/4M0) (38)

’ 2=M0

p
|t| exp 1 − t

4

4M0

2 , tQ ±. (39)

This decay is much faster than the behavior (29) found in the case of
aggregation in empty space. This is of course due to the fact that the inertia
of the particles at rest prevents a fast escape of the excited particles.
Moreover, since the latter particles necessarily collect the mass of the par-
ticles at rest on a distance of the order t`t , the mass of the first aggregate
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moving to the left (or to the right) grows as `t . This is represented in
Fig. 3: the two peaks at ±t0 reflect indeed the fact that on the average we
will observe a mass of order `t well localized around ±x0=±t0 `t .

Scalings x=tta, t < 0 with a > 1/2 or 0 [ a < 1/2 correspond to the
limiting cases tQ −. or tQ 0. Thus the probability to find excited par-
ticles at scales larger than t`t vanishes whereas it remains equal to the
distribution (21) on scales shorter than t`t .

3. INITIALLY EXCITED PARTICLES IN A SEMI-INFINITE INTERVAL

3.1. Aggregation in Empty Space

The initial particles occupy the sites of the semi-infinite lattice
{ka, k=1, 2,...}. The probability to find j initially excited particles left of x
is obtained by letting NQ. in (10). This yields

Pm(x, j, t)=Jm((j+1/2) a−x, j, t) Jm(x−(j+1/2) a, t) (40)

where the function

Jm(Y, t)= lim
N Q.

Jm(Y, N, t) (41)

is the same as that studied in refs. 10 and 11; it is the measure of Brownian
paths starting from the origin constrained to be above the parabola
fY(y, t) for all discrete times yr=rm, r=1, 2,... . Now one has the nor-
malization

C
.

j=0
Pm(x, j, t)=1 (42)

In the continuum limit the corresponding functions J(Y, M, t) and J(Y, t)
are expressed in term of the conditional measure Kf(0, P0, M, P) of
Brownian paths starting from P0 at ‘‘time’’ 0, ending at P at ‘‘time’’M and
lying above the parabola fY(y, t) for all ‘‘intermediate times":

J(Y, M, t)=lim
m Q 0

1

`m
Jm(Y, j, t)=

1
2
F
.

fY(M, t)
dP
“

“P0
Kf(0, P0, M, P)|P0=0

J(Y, t)= lim
M Q.

J(Y, M, t)
(43)
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The properties of these functions are described in the Appendix B. Thus the
probability density to find an amount of mass M> 0 left of x at time t is
given by

p(x, M, t)=lim
m Q 0

1
m
Pm(x, j, t)=J(M−x, M, t) J(x−M, t) (44)

and it is normalized to one5

5 It can be checked that the weight at the point M=0 is zero as in the case of the finite
interval.

F
.

0
J(M−x, M, t) J(x−M, t)=1 (45)

In contrast to the finite interval case we can explicitly extract the time
dependence by scaling:

J(Y, M, t)=t−1/3J(Yt−2/3, Mt−2/3)

J(Y, t)=t−1/3J(Yt−2/3)
(46)

where J(Y, M) and J(Y) are the above functions evaluated at t=1.
By consequence, the time dependence of the probability density (44) is

given by

p(M, x, t)=t−2/3J(Mt−2/3−xt−2/3, Mt−2/3) J(xt−2/3−Mt−2/3) (47)

Hence the probability to find a mass M between mt2/3 and (m+dm) t2/3 left
of x=tt2/3 is p(m, t) dm with

p(t, m)=J(m−t, m) J(t−m) (48)

The average mass left of tt2/3 is then

M(tt2/3, t)=t2/3M(t)

M(t)=F
.

0
dm mJ(m−t, m) J(t−m)

(49)
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Fig. 4. The mass density for aggregation (semi-infinite excited interval) in empty space at
scale tt2/3 (solid curve, Eq. (49)). For aggregation with particles at rest, the mass density of
excited particles is the dashed curve for t < 0. For t > 0, the curves are identical.

The asymptotic behavior of (49) as tQ −. is obtained by inspection of
functions J(m−t, m) and J(t−m) and found to be (Appendix B)

M(t) ’
1
4t2 , tQ −. (50)

Hence the mass density profile r(t)= d
dtM(t) behaves as ’ 1

2 |t|3
, tQ −.

as in the finite interval problem, see (29). Writing (49) as

M(t)=F
.

−t
dm(m+t) J(m, m+t) J(−m) (51)

and using (45) and (70), r(t) can be written in the form

r(t)=1−e−t3/3 F
.

0
dm mI(m)J(t−m) (52)

The functions I and J are defined in (67) and (70). Hence r(t) saturates
to its bulk value r(.)=1 very fast as tQ. (with a correction decaying at
least as e−t3/3). The profile r(t) is shown in Fig. 4.

It is also interesting to look at the mass distribution on larger scales tta,
2/3 < a [ 1. On the ballistic scale x=tt, one finds (Appendix B)

lim
t Q.
p(tt, M, t)=

t2

`p
C−1/2(Mt2), t < 0 (53)
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which of course agrees with the the limit of (17) as M0 Q.. The existence
of the distribution (53) shows that there is a number of forerunner particles
in the front of the profile that move freely without undergoing aggregation
anymore. They carry the finite amount of mass M=1/4t2 at distance tt.
At shorter distances |t| ta, 2/3 < a < 1, the mass of an aggregate grows as a
consequence of the collisions with faster particles coming from the right
(the semi-infinite right interval acts here as an infinite reservoir of par-
ticles). The rate of growth is of the order t2(1−a) since according to (49)
and (50)

M(tta)=t2/3M(tta−2/3) ’
t2(1−a)

4t2 , tQ. (54)

At distances |t| t2/3 or shorter one recovers the mass growth ’ t2/3 that is
typical for the homogeneous ballistic aggregation process.

3.2. Aggregation with Particles at Rest

The initial particles occupy again the sites of the right semi-infinite
lattice {ka, k=1, 2,...}, but now we have particles at rest on the left semi-
infinite lattice. The probability to find j initially excited particles left of x
is obtained by letting NQ. in (30). Since again limN Q. J̃m(Y, N, t)=
J(Y, t) this yields

P̃m(x, j, t)=J̃m((j+1/2) a−x, j, t) J(x−(j+1/2) a, t) (55)

where J̃m(Y, j, t) is the function (31). According to the discussion of con-
straints following (31), J̃m((j+1/2) a−x, j, t) is equal to the expression
(32) when x < 0 whereas it reduces to Jm((j+1/2) a−x, j, t) when x > 0.
The continuum limit gives similarly to (43)

J̃(Y, M, t)=lim
m Q 0

1

`m
J̃m(Y, j, t)

=
1
2
F
.

Y2/2t
dP
“

“P0
Kf(0, P0, M, P)|P0=0, 0 <M [ Y (56)

where the only change occurs in the lower integration limit, and

J̃(Y, M, t)=J(Y, M, t), M \ Y (57)

The function J̃(Y, M, t) for 0 <M [ Y is given in the Appendix B.
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The time dependence is determined by scaling as in (47) with

p̃(t, m)=J̃(m−t, m) J(t−m), m > 0 (58)

and the average mass left of tt2/3 is6

6 As in the finite interval case, there is a non zero weight at M=0 when t < 0, but this does
not contribute to the average mass.

M̃(tt2/3, t)=t2/3M̃(t)

M̃(t)=F
.

0
dm mJ̃(m−t, m) J(t−m)

(59)

For t > 0 all the predictions are the same as in Section 3.1. When t < 0 the
mass density of excited particles r̃(t)=dM̃(t)/dt decays exponentially
fast as tQ −. (Appendix B) and is plotted in Fig. 4. Compared to the
slow decay found in (50), this corresponds to the fact that here no particles
can move ballistically in the front of the profile.

4. CONCLUDING REMARKS

The asymptotic distribution of mass p.(t, M) (17) and p̃.(t, M) (35)
have been derived in Section 2 under the assumption of the Gaussian dis-
tribution (1) of initial momenta. It would be of interest to investigate to
what extent these results are universal, i.e., independent of the specific form
of the initial momentum distribution, provided that the latter is symmetric,
scales with m as in (1), and is sufficiently regular. Results of this type have
been obtained in ref. 13.

In the continuum limit, the statistics of aggregating particles (with
Gaussian initial velocity distribution (1)) is the same as that of shocks in
the one-dimensional Burgers turbulence when the initial Burgers velocity
field u0(x)=u(x, t=0) is a white noise (refs. 2, 12, and references therein).
In the homogeneous situation, the (one-dimensional) fluid extends over the
whole space and u0(x) is a white noise for −. < x <.. The case (ii)
(aggregation with particles at rest) corresponds to the situation where the
initial excitation u0(x) is a white noise in a finite or semi-infinite interval
and the fluid is at rest elsewhere. Such excitations of the initial Burgers
field in a finite interval are studied in ref. 15. Our results can be translated
in Burgers language if one recalls that the velocity difference Du (or force
strength) is related to the mass of aggregates by Du=M/t. Hence
pBurgers(x, Du, t)=tpaggreg.(x, Dut, t) is the probability density for a total
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force strength Du left of x, and from there one can obtain the average
density of shocks rBurgers(x, t) at the point x. In ref. 15, the probability
distribution for the difference Du of the Burgers field over a distance x is
calculated and shown to have a scaling limit in terms of the variables
x̄=x`t and D̄u=Du`t . In the language of ballistic aggregation this
corresponds to our findings, namely to have a mass of order `t at dis-
tance of order `t . Also non Gaussian distributions similar to (35) and
(39) are obtained. The correspondence of the case (i) (aggregation in empty
space) with Burgers theory should still be investigated.

APPENDIX A

For the sake of completeness, we recall the expression of the condi-
tional measure Ka(M1, P1, M2, P2) of Brownian paths starting from P1 at
‘‘time’’ M1, ending at P2 at ‘‘time’’ M2 and constrained to remain above
the line a(y)=ay+b

Ka(M1, P1, M2, P2)=exp[a(Z1−Z2)+
1
2a

2(M1−M2)] G(M1, Z1, M2, Z2)

Z1=P1−aM1−b, Z2=P2−aM2−b (60)

where

G(M1, Z1, M2, Z2)

=1 1
p(M2−M1)

21/2 5exp 1 −(Z2−Z1)2

M2−M1

2− exp 1 −(Z2+Z1)2

M2−M1

26

(61)

is the fundamental solution of the diffusion equation

1 “
“M2

−
1
4
“

2

“Z2
2

2 G(M1, Z1, M2, Z2)=0

with Dirichlet boundary condition at Z2=0.
One obtains from (60), (61) and (15) setting a=t, b=0

J.(t, M)=
2

`pM3/2
F
.

tM
dP(P+tM) exp 1 −P

2

M
2 (62)
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The result (16) follows from the change of variable P2/MQ P and inte-
gration by part (also using >.−. du exp(−u2)=`p when t < 0).

A.1. The Normalization Relation (18)

From (18) we have

F
M0

0
dM p.(t, M)

=
1

`p
F

M0

0
dM C−1/2(M)+

1
4p

F
M0

0
dM C−1/2(M) C−1/2(M0−M)

(63)

Hence, the normalization (18) is equivalent in Laplace transform to

1

`p s
C̃−1/2(s)+

1
4p
(C̃−1/2(s))2=

1
s

This last equality is verified using C̃−1/2(s)=
2`p

s (`1+s−1).

A.2. The Normalization Relation (37)

Consider the case of aggregation with particles at rest. The probability
P̃m(x, 0, t) to find no excited particles left of x, x < 0, can also be
computed directly from the probability to find all of them right of x:

P̃m(x, 0, t)=7D
r \ 1
h(X r

[x](t)−x)8

=F dP1 · · ·F dPN jm(P1) · · ·jm(PN) D
N

r=1
h 1Pr+

(x+rm)2

2t
2 (64)

with [x]=integer part of x. Setting x=t`t , as tQ. this probability
tends to

P̃.m (t, 0)=F dP1 · · ·F dPN jm(P1) · · ·jm(PN) D
N

r=1
h 1Pr+

t2

2
2 (65)

and one sees that in the continuum limit, P̃.(t, 0)=limm Q 0 P̃
.

m (t, 0) is
given by the conditional measure of Brownian paths that start from P=0
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at ‘‘time’’M=0 and are above −t2/2 up to ‘‘time’’M0, namely from (60)
and (61) with a=0 and b=−t2/2

P̃.(t, 0)=
1

`pM0

F
.

−t2/2
dP 5exp 1 − P

2

M0

2− exp 1 −(P+t
2)2

M0

26

=
1

`p
c1/2(t4/M0) (66)

which agrees with (37).

APPENDIX B

B.1. The Functions J(Y ) and J(Y, M )

The kernel Kf(M0, P0, M, P) occurring in (43) is explicitly given in
ref. 11, Eq. (29)7 in terms of Airy functions, and the function J(Y, t) is

7 n in this equation stands for our variable Y and D=1/2 in the present paper.

found to be in ref. 11, Eqs. (65) and (66)

J(Y, t)=t−1/3J(Yt−2/3)

J(Y)=e−Y3/3J(Y), J(Y)=
1
2ip

F
i.

−i.
dw

ewY

Ai(w)

(67)

where Ai(w) is the Airy function as defined in ref. 16.
To determine J(Y, M, t), we first calculate its derivative with respect

to M in (43) (setting t=1). Using the fact that Kf(M0, P0, M, P) obeys the
diffusion equation and vanishes on the parabola fY(M) one gets

“J(Y, M)
“M

=
1
8
F
.

fY(M)
dP
“

2

“P2
5 “
“P0
Kf(0, P0, M, P)|P0=0

6

=−
1
8
“

2

“P0 “P
Kf(0, P0, M, P)|P0=0, P=fY(M)

=−
1
2
I(M, fY(M)) (68)
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with I(M, P) the function given in ref. 11, Eqs. (49), (54) and (55)

I(M, P)=2 exp 5−P
2

M
−
M3

12
6 I(M)

I(M)=C
k \ 1
e−wkM, −wk=zeros of the Airy function

(69)

This leads to

“J(Y, M)
“M

=−e−Y3/3e−(M−Y)3/3I(M) (70)

By integration of (70) (remember that J(Y)=limM Q. J(Y, M)) the final
result is

J(Y, M)=J(Y)+Jg(Y, M)

Jg(Y, M)=e−Y3/3 F
.

M
du I(u) e−(u−Y)3/3

(71)

The time dependence can be restored by the scaling relations (46). The
asymptotic behaviors of the functions J and I are

J(Y) ’ 2 |Y| e−|Y|3/3, YQ −., J(Y) ’
e−w1Y

AiŒ(−w1)
, YQ. (72)

I(M) ’
1

`4pM3
, MQ 0, I(M) ’ e−w1M, MQ. (73)

B.2. Proof of (50) and (53)

We first show (53). According to the decomposition (71) of J(Y, M)
=J(Y)+Jg(Y, M) one can split p=p (1)+p (2) (47) into two contributions

p (1)(x, M, t)=t−2/3Jg(MŒ−xŒ, MŒ) J(xŒ−MŒ)

p (2)(x, M, t)=t−2/3J(MŒ−xŒ) J(xŒ−MŒ)
(74)
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Setting x=tt and inserting the expression (71) of Jg(Y, M), the first con-
tribution becomes

p (1)(M, tt, t)

=t−2/3 F
.

Mt −2/3
du I(u) exp(− 1

3 (u−Mt
−2/3+tt1/3)3)J(tt1/3−Mt−2/3)

(75)

For t < 0 one can replace J(Y) by its asymptotic form (72) as its argument
tends to −.:

J(tt1/3−Mt−2/3) ’ 2 |tt1/3−Mt−2/3| exp(− 1
3 |tt

1/3−Mt−2/3|3), t < 0
(76)

We now collect the non vanishing terms in the exponentials as tQ.,
namely

exp[− 1
3 (|tt

1/3−Mt−2/3|3+(u−Mt−2/3+tt1/3)3)]

’ exp(−u3/3−ut2t2/3−u2tt1/3) (77)

Taking (76) and (77) into account in (75) and changing the integration
variable u=t−2t−2/3v leads to

p (1)(tt, M, t) ’
2
|t| t

F
.

Mt2
dv I 1 v

t2t2/3
2 exp 5− v

3

3t6t2
−
v2

t3t
−v6 , tQ.

(78)

The dominant contribution comes from the divergence (73) of the I func-
tion for small argument. Thus using (73) in (78) and letting tQ. one finds
eventually

lim
t Q.
p (1)(tt, M, t)=

t2

`p
F
.

Mt2
dv v−3/2e−v (79)

which is identical to (53). Moreover, limt Q. p
(2)(tt, M, t)=0 as a conse-

quence of the fact that J(Y) function tends to zero fast both for large
positive and negative values of its argument (see (72)). This proves (53).
The time asymptotics of the distribution p(tt, M, t) (22) corresponding to
initial particles in a finite interval can be determined along the same lines,
leading to the result (17).
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To show (50), one splits M(t)=M (1)(t)+M(2)(t) as above with

M (1)(t)=F
.

0
dm mJg(m−t, m) J(t−m)

M (2)(t)=F
.

0
dm mJ(m−t) J(t−m)

(80)

In

M (1)(t)=F
.

0
dm m F

.

m

du I(u) e−(u−m+t)3/3J(t−m) (81)

one replaces J(t−m) by its asymptotic behavior (72) for large negative
argument

M (1)(t) ’ F
.

0
dm m2 |t−m| F

.

m

du I(u) exp[−u3/3−(t−m) u2−(t−m)2u]

’
2
t2 F

.

0
dm m |t−m| F

.

mt
2
dv I 1 v

t2
2 e−v (82)

where the second line results of the change of variable ut2=v and keeping
only the dominant contribution as tQ −. in the exponential. In this
limit, only the asymptotic behavior (73) of I(u), uQ 0 matters. When this
is introduced in (82), the integrals can be evaluated leading to (50). In view
of (72), M (2)(t) tends to zero exponentially fast as tQ ±..

B.3. The Function J̃(Y, M )

We proceed as in (68)–(71). The only difference is that the lower inte-
gration limit fY(M) is replaced by Y2/2. This leads to

“J̃(Y, M)
“M

=−
1
2
I(M, Y2/2), 0 <M [ Y (83)

Using (69) and integrating fromM to Y gives

J̃(Y, M)=J(Y, Y)+F
Y

M
du exp 1 −Y

4

4u
−
u3

12
2 I(u), 0 <M [ Y (84)

where one has taken into account that J̃(Y, Y)=J(Y, Y) (see (57)) and
J(Y, Y) can be found from (71). Time dependence can be reintroduced by
scaling.
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One checks, with the help of these equations and the asymptotic
behaviors of the functions J and I (72) and (73), that M̃(t) decays expo-
nentially fast as tQ −..
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